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The results of mathematical modeling of free convective heat exchange near a semiinfinite, impermeable, flat
vertical surface have been presented. The features of velocity and temperature fields as functions of the
boundary conditions and the Prandtl number have been studied. Tables of numerical solutions have been
given. The esults obtained have been compared to the numerical data of other authors.

Introduction. The significance of the theory of free convective heat exchange is growing steadily every year,
which has been predetermined by the objective trends of modern technology toward developing with continuous in-
crease in the unit powers of machines, mechanisms, and equipment, the complication and variety of their structures,
and the difference in operating conditions and strategy with the simultaneous insufficiency of manpower and produc-
tive forces. The state of the art in this field of knowledge is characterized by the higher faithfulness of prediction of
hydrodynamic and thermal processes, the development of new mathematical models and the refinement of old ones,
the search for efficient numerical and analytical approaches to an analysis of applied problems formulated in the lan-
guage of equations, and the extension of the fields of application of the data obtained [1]. Hundreds of names are
counted at present in the bibliography on investigation of free convection on a vertical surface. The formulation and
solution of problems within the framework of this issue even for the laminar regime of motion of a liquid involve cer-
tain methodological and mathematical difficulties. The interrelation of hydrodynamic and temperature fields, the non-
linear dependence of the basic characteristics on the governing parameters, the limited capabilities of analytical
approaches, and the necessity of allowing, in numerical integration, for the fact that the solutions sought have both
rapidly and slowly varying components at a time determine the belonging of these problems to a complex class of par-
tial differential equations. The main drawback of numerous results is that one uses, in them, data from the earlier
works in which no comprehensive information of a numerical analysis of the problem is given. Therefore, comparisons
are usually made in a narrow parametric range, which, naturally, makes it difficult to clearly visualize some con-
structed solutions or others and the degree to which the entire problem has been attacked. This information base often
provides the basis for analysis of other problems, e.g., on calculation of conjugate convective heat exchange or study
of nonstationary heat transfer.

Thus, the need for additional more detailed investigations of free convective heat exchange is apparent.
Below, we give results of a comprehensive numerical analysis of fully developed laminar free convective

flows on a semiinfinite, impermeable, flat vertical plate with two types of thermal boundary conditions: a constant wall
temperature and a constant heat flux on the surface.

Basic Equations. Using the assumptions made in boundary-layer theory, in combination with the Boussinesq
approximation, we may write the basic equations for the problem in question in the following form:
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Boundary conditions for system (1) will be
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y = 0 :   v = u = 0 ,   T = Tw   or   − k 
∂T

∂y
 = qw ;

y → ∞ :   u → 0 ,   T → T∞ .
(2)

The next step is the reduction of Eqs. (1) and (2) to dimensionless form. This procedure is more conveniently per-
formed individually for the cases of a constant wall temperature and a constant heat flux on the surface.

Isothermal Surface. We determine the dimensionless temperature

Pr [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

0.01 1.3947 — 1.395266 — — — — — 1.39625 1.3969

0.02 — 1.35623 — — — — — — — 1.3562
0.03 — 1.32710 — — — — — — — —
0.05 — — — — — — — — — 1.2844
0.10 — — — — 1.21501 — — 1.2140 1.21495 1.2150
0.50 — — — — — — — — — 1.0086
0.70 — — — — 0.96012 — — — — 0.9601
0.72 — — 0.955977 — — — — 0.9558 0.95601 —

0.733 0.9533 — — — — — 0.95343 — — —
1 0.9081 — 0.908178 — — — — 0.9081 0.90821 0.9082
2 0.8079 — — 0.80788 — — — — 0.80794 0.8079
5 — — 0.681348 — — — — — 0.68137 0.6814

6.7 — — — — — — — — 0.64318 —
7 — — — — — — — — — 0.6375

10 0.5928 — 0.592806 0.59284 — 0.59284 0.59284 0.5930 0.59284 0.5928
100 0.3560 — — — — 0.35594 0.35594 0.3564 0.35596 0.3559

TABLE 1. Comparison of the Values of f ′(0, Pr) for the Case of an Isothermal Surface

Pr [2] [3] [4] [5] [12] [6] [7] [8] [9] [10] [11]
0.01 0.0574 — 0.057365 — — — — — — 0.0571 0.0570
0.02 — 0.0789 — — — — — — — — 0.0789
0.03 — 0.0952 — — — — — — — — —
0.05 — — — — — — — — — — 0.1200
0.10 — — — — — 0.1629 — — 0.1637 0.1627 0.1627
0.50 — — — — — — — — — — 0.3120
0.70 — — — — — 0.3532 — — — — 0.3532
0.72 0.3568 — 0.356819 — — — — — 0.3567 0.3568 —

0.733 0.3592 — — — — — — 0.35915 — — —
1 0.4010 — 0.401026 — 0.4010 — — — 0.4009 0.4010 0.4010
2 0.5066 — — 0.50662 — — — — — 0.5066 0.5066
5 — — 0.674576 — — — — — 0.6750 — 0.6746

6.7 — — — — — — — — 0.7360 — —
7 — — — — — — — — — — 0.7455

10 0.8269 — 0.826807 0.82684 — — 0.82684 0.82659 0.8266 0.8268 0.8268
100 1.5490 — — — 1.5493 — 1.54953 1.54953 1.5495 1.5495 1.5495

TABLE 2. Comparison of the Values of –h′(0, Pr) for the Case of an Isothermal Surface
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1 ⁄ 4
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− 1 ⁄ 4 y (3)

and introduce the dimensionless stream function and temperature

ψ (x, η) = (gβ∆Twν
2)1

 ⁄ 4 f (η) x3 ⁄ 4 ,  ∆T (x, η) = ∆Twh (η) . (4)

As a result of substitution of relations (3) and (4) into (1) and (2), we obtain
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3
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1
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1
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3
4
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(5)

where ′ means the derivative with respect to η.
The distribution of the longitudinal velocity component is described by the function f ′ = u/(gβ∆Twx)1 ⁄ 2,

whereas the local Nusselt and Grashof numbers, the friction stress on the wall, and and mass rate of flow have the
form
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ν2  ,   
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2
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m

µ
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1 ⁄ 4 . (6)

Thus, determination of the characteristics of free convective heat exchange near a flat isothermal vertical sur-
face has been reduced to integration of the system of two interrelated nonlinear ordinary differential equations with pa-
rameter Pr. Since no analytical solution of problem (5) was found, primary emphasis was placed on its numerical
solution in specifying the Prandtl number within the framework of different computational procedures and algorithms
[2–12] (Tables 1 and 2). It should be noted that the dependence of the functions sought on Pr is different:

Pr → ∞ :   f D Pr
−0.25

 ,   h′ D Pr
0.25

 ,   f ′′ D Pr
−0.25

 ; 

Pr → 0 :   f D Pr
−0.5

 ,   h′ D Pr
0.5

 ,   f ′′ D const .

(7)

Therefore, if we seek to numerically solve Eqs. (5) without using special techniques for high or low values of the
Prandtl number, this will cause large errors. By virtue of what has been stated above, it becomes expedient to change
to another system (′ means the derivative with respect to ξ)

Pr f ′′ (0, Pr) −h′  (0, Pr) fm′  (Pr) η (fm′ ) f (∞, Pr)

0.70 0.9601241 0.3532078 0.556854 1.3643 1.7143640

0.72 0.9560360 0.3568303 0.552487 1.3598 1.6938851

1 0.9081912 0.4010331 0.502656 1.3079 1.4792094

5 0.6813538 0.6745825 0.296961 1.0752 0.8574515

6.7 0.6431175 0.7359703 0.267089 1.0361 0.7881081

7 0.6374998 0.7455123 0.262816 1.0303 0.7783997

10 0.5928330 0.8268440 0.229905 0.9839 0.7049284

100 0.3559477 1.5495357 0.088425 0.7070 0.3864672

500 0.2426154 2.3498926 0.042355 0.5482 0.2573906

TABLE 3. Characteristics of Free Convective Heat Exchange on a Semiinfinite, Impermeable, Isothermal Flat Vertical Surface
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for solution of the initial problem. Relations (8) are a result of using new generalized variables:

f (η) = Pr
−1 ⁄ 2 (1 + Pr)−1 ⁄ 4 F (ξ) ,   ξ = Pr

1 ⁄ 2 (1 + Pr)−1 ⁄ 4 η ,   h (η) = H (ξ) . (9)

Once Eqs. (5) have been reduced to the form (8), the parameters of flow are "normalized" so that their values vary
within finite limits, e.g., −H ′(0) ranges between 0.47 and 0.6. The latter enables us to reduce problem (8) to the
Cauchy problem with unknown parameters and to use the targeting method in finite form. Numerical integration has
been carried out within the standard Runge–Kutta scheme. The data of the numerical solution are presented in Table 3.

Constant Heat Flux on the Surface. In this case, we have
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(10)

Substitution of (10) into (1) and (2) yields the following system of equations:

f ′′′ + 
4
5

 ff ′′ − 
3
5

 f ′2 + h = 0 ,   
1
Pr

 h′′ + 
4
5

 fh′ − 
1
5

 f ′h = 0 ,   f (0) = 0 ,

f ′ (0) = 0 ,   f ′ (∞) = 0 ,   h′ (0) = − 1 ,   h (∞) = 0 .
(11)

Pr [13] [14] [15] [16] [7] [8] [17] [10]
0.01 — — — — — — — 119.7608
0.10 3.12850 — — — — — — 3.1288
0.70 — 1.566044 — — — — — —
0.72 — — — — — — — 1.5495

0.733 — — — 1.539925 — 1.53993 1.539925 —
1 1.37436 1.374382 1.37438 — — — — 1.3743
2 — 1.064575 — — — — — 1.0645
3 — 0.915973 — — — — — —
4 — 0.822914 — — — — — —
5 — 0.757068 — — 0.75706 — — 0.7570

6.7 — — — 0.678333 — — 0.678333 0.6782
7 — 0.667248 — — — — — —

10 0.58326 0.583201 — — 0.58320 0.58320 — 0.5833
50 — — — — 0.31464 — — —

100 0.24024 — — — 0.24021 0.24021 — 0.2402
500 — — — — 0.12751 — — —

TABLE 4. Comparison of the Values of f ′′(0, Pr) for the Case of a Constant Heat Flux on the Wall
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Among the physical quantities of interest are not only the velocity (temperature) distributions but also the local Nusselt
and Grashof numbers, the friction stress on the wall, and the mass rate of flow. It may be shown that

Nux = 
1

h (0)
 Grx

1 ⁄ 5 ,   
τwx

2

ρν2  = f ′′ (0) Grx
3 ⁄ 5 ,   

m

µ
 = f (∞) Grx

1 ⁄ 5 ,   Grx = 
gβqwx

4

kν2  .
(12)

Formulas (12) enable us to promptly determine and evaluate the action of different parameters and factors on the hy-
drodynamics and intensity of heat transfer. Numerical methods of analysis of the formulated problem (11) have been
developed in a number of works [7, 8, 10, 12–21]. A comparison of the results obtained within the framework of dif-
ferent numerical schemes (Tables 4 and 5) yields one feature, namely, spread in calculated values. To overcome the
difficulties of numerical integration we introduce new variables and functions:

f (η) = Pr
−3 ⁄ 5 (1 + Pr)−1 ⁄ 5 F (ξ) ,   ξ = Pr

2 ⁄ 5 (1 + Pr)−1 ⁄ 5 η ,   h (η) = Pr
−2 ⁄ 5 (1 + Pr)1

 ⁄ 5 H (ξ) . (13)

With account for (13), system (11) takes the form

Pr [13] [18] [14] [12] [19] [20] [16] [7] [8] [17] [10] [21] [15]
0.001 — — — — 21.1872 — — — — — — — —
0.01 — — — — 8.69544 — — — — — 8.6963 — —
0.1 3.7952 — — — 3.79770 — — — — — 3.7961 3.7965 —
0.5 — — — — — 2.27955 — — — — — — —
0.7 — — 2.068534 — — — — — — — — 2.0687 —
0.72 — — — 2.0515 — — — — — — 2.0526 — —

0.733 — — — — — 2.04174 2.041734 — 2.04173 2.041734 — — —
1 1.8728 — 1.872839 1.8728 1.87280 1.87283 — — — — 1.8733 — 1.87284
2 — — 1.559111 — — 1.55911 — — — — 1.5593 — —
3 — — 1.408019 — — — — — — — — — —
4 — — 1.312465 — — — — — — — — — —
5 — — 1.244133 1.2431 — — — 1.24413 — — 1.2445 — —

6.7 — — — — — — 1.161321 — — 1.161320 1.1617 — —
7 — — 1.149541 — — — — — — — — 1.1498 —
10 1.05889 — 1.059004 1.0589 1.05887 — — 1.05900 1.05900 — 1.0590 — —
50 — — — — — — — — — — — — —

100 0.64248 0.64251 — 0.6424 0.64249 — — 0.64252 0.64252 0.6425 0.6433 —
500 — — — — — — — — — — — — —

1000 — — — — 0.40014 — — — — — — — —

TABLE 5. Comparison of the Values of h(0, Pr) for the Case of a Constant Heat Flux on the Wall

Pr f ′′ (0, Pr) h′ (0, Pr) fm
′  (Pr) η (fm′ ) f (∞, Pr)

0.70 1.5660422 2.0685331 0.730285 1.1151 1.8820244
0.72 1.5500202 2.0520877 0.721625 1.1136 1.8556490

1 1.3743817 1.8728379 0.626716 1.0953 1.5821137
5 0.7570680 1.2441325 0.300576 0.9963 0.8257830

6.7 0.6783334 1.1613205 0.261020 0.9768 0.7459188
7 0.6672466 1.1495394 0.255515 0.9738 0.7348384

10 0.5832012 1.0590043 0.214384 0.9486 0.6518663
100 0.2402073 0.6425167 0.064047 0.7781 0.3152117
500 0.1275070 0.4608027 0.025964 0.6545 0.1931532

TABLE 6. Characteristics of Free Convective Heat Exchange on a Semiinfinite, Impermeable, Flat Vertical Surface with a
Constant Heat Flux
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Problem (14) is devoid of the drawbacks of the system of equations (11) and resolves many difficulties arising in nu-
merical analysis for high or low values of Pr numbers. The solution of (14) has been found with the Runge–Kutta in-
tegration scheme in combination with the Newton–Raphson method to satisfy the conditions at the external boundary
of the boundary layer. The calculation results are presented in Table 6.

Calculation Results and Their Discussion. The results obtained enable us to elucidate the manner in which
the Prandtl number influences the dynamic and thermal characteristics of free convective motion of a liquid along a
vertical plate. It follows from Tables 3 and 6 that the calculated parameters, other than the quantity –h′(0, Pr), mono-
tonically decrease with increase in Pr throughout the considered range of variation in Pr numbers. It is of interest to
directly compare data found for the liquid with Prandtl numbers Pr = 0.7 and 7 that are characteristic of air and water.
For any specified value of the parameter Grx, the local Nusselt number in the case Tw = const and qw = const is
higher for Pr = 7 than that for Pr = 0.7. The reason is that the thickness of the thermal boundary layer decreases with
increase in the Prandtl number and the temperature gradient on the plate surface grows, which leads to a higher inten-
sity of heat transfer. On the other hand, the friction factor for Pr = 0.7 is higher than that for Pr = 7. This result is
attributed to the fact that liquids having a Prandtl number of 0.7 are characterized by larger variations in the velocity
gradients on the wall than liquids with Pr = 7. A comparison of local Nusselt numbers for the cases qw = const and
Tw = const can be made based on the formula

(Nux)qw=const

(Nux)Tw=const

 = 
1

(h (0, Pr))5
 ⁄ 4 (− h′ (0, Pr))

 .
(15)

Relation (15) is more than unity, i.e., heating at a constant density of the heat flux on the wall yields higher values
of the local Nusselt number than heating at a constant wall temperature. This is due to the fact that liquid particles
near the plate surface have a higher velocity and will remove heat in the case qw = const more rapidly than at Tw =
const. Furthermore, the ratio of the Nusselt numbers decreases with increase in Pr and becomes virtually constant and
equal to 1.12 for high values of the Prandtl numbers.

NOTATION

g, free-fall acceleration, m/sec2; Grx and Nux, local Grashof and Nusselt numbers; k, thermal conductivity,
W/(m⋅K); m, mass rate of flow, kg/(m⋅sec); Pr, Prandtl number; qw, heat flux on the wall, W/m2; T, temperature, K;
Tw and T∞, wall and ambient temperature, K; u and v, longitudinal and transverse velocity components, m/sec; x, y,
longitudinal and transverse coordinates, m; β, coefficient of volumetric thermal expansion, 1/K; ∆T = T − T∞, excess
temperature, K; µ, coefficient of dynamic viscosity, kg/(m⋅sec); ν, coefficient of kinematic viscosity, m2/sec; ρ, density,
kg/m3; τw, friction stress on the wall, kg/(m⋅sec2). Subscripts: m, maximum values; w, wall; ∞, ambient liquid.
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